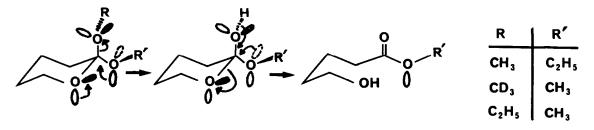
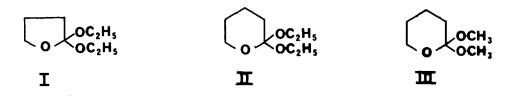
Tetrahedron Letters No. 1, pp 61 - 62, 1978. Pergamon Press. Printed in Great Britain.


HYDROLYSIS OF ORTHOESTERS ; APPLICATION TO COMPOUNDS WHICH HYDROLYSE WITH STEREOELECTRONIC CONTROL

* Otmane BOUAB, Claude MOREAU and Mathias ZEH AKO

Laboratoire de Chimie Organique Physique, U.S.T.L., 34060 MONTPELLIER CEDEX, FRANCE (Received in UK 18 October 1977; accepted for publication 11 November 1977)


We wish to report the results obtained for the hydrolysis of orthoesters which have been shown to hydrolyse with stereoelectronic control .

Stereoelectronic control implies that the specific cleavage of a carbon - oxygen bond is allowed only if the two other oxygens each have an orbital oriented antiperiplanar to the O-alkyl leaving group¹. The important consequence of this control to the stereochemical course of hydrolysis of 2,2-dialkoxytetrahydropyrans has been unambiguously demonstrated² (scheme 1) but its influence on the kinetics of hydrolysis has not to date been established .

Scheme 1

The results of such a study carried out on three orthoesters :2,2-diethoxytetrahydrofuran (I), 2,2-diethoxytetrahydropyran (II) and 2,2-dimethoxytetrahydropyran (III) are reported below in Table I :

Table I - Rate constants of orthoesters hydrolysis in buffered aqueous solutions (in $M^{-1}.s^{-1}$) . T = 25°C., μ = 0.1 M .

		Me ₂ AsOOH	H ₂ P0 ₄	HB0 ₂	н ₂ 0
I 3.9 10 ⁴	3.03	2.40 10 ⁻²	4.75 10 ⁻²	5.88 10 ⁻⁵	9.0 10 ⁻⁸
II 4.1 10 ⁴	4.07	1.60 10 ⁻²	3.69 10 ⁻²	1.87 10 ⁻⁵	8.8 10 ⁻⁸
III 5.9. 10 ³	0.90	2.22 10 ⁻²	2.66 10 ⁻²	3.76 10 ⁻⁵	8.3 10 ⁻⁸

Reactions were monitored spectroscopically by following the appearance of hydroxy-ester at 215 nm.

From the results listed in table I two conclusions may be drawn namely :

1) The hydrolysis of these orthoesters is subject to general acid catalysis, the kind of catalysis currently observed with other orthoesters³⁻⁵.

2) The measured Brönsted α coefficients obtained by plotting log k_{catalyst} against the pK_a of the catalysts suggest that proton transfer is well advanced in the transition state : $\alpha = 0.67 \pm 0.04$ (r = 0.994) for I ; $\alpha = 0.68 \pm 0.05$ (r = 0.988) for II and $\alpha = 0.64 \pm 0.05$ (r = 0.989) for III .

The important question that arises then is whether general acid catalysis is consistent with the concept of stereoelectronic control .

It has been shown by theoretical calculations⁶ and X-Ray diffraction⁷ that if two lone pairs lie antiperiplanar to a polar bond, the polar bond is both weaker and longer than usual . The consequence of these two effects **for** our compounds is evident : already in the initial state the axial O-alkyl leaving group becomes the better one and the axial C-O-alkyl bond is easier to cleave (see scheme 1) . Such a situation would at the same time be expected to favour general acid catalysis .

As applied to the problem of acid-base catalysis stereoelectronic control is a new and we believe potentially useful concept .

References : 1 - P. DESLONGCHAMPS, Tetrahedron, 1975, 31, 2463 .

- 2 P. DESLONGCHAMPS, R. CHENEVERT, R.J. TAILLEFER, C. MOREAU and J.K. SAUNDERS, Can. J. Chem., 1975, 53, 1601 .
- 3 E.H. CORDES and H.G. BULL, Chem. Rev., 1974, 74, 581 .
- 4 T.H. FIFE, Accounts Chem. Res., 1972, 5, 264 .
- 5 W.P. JENCKS, Chem. Rev., 1972, 72, 705 .
- 6 J.M. LEHN and G. WIPFF, J. Amer. Chem. Soc., 1974, 96, 4048 .
- 7 H.B. BURGI, J.D. DUNITZ and E. SHEFTER, Acta Cryst., 1974, B30, 1517 .